If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+136x+512=0
a = 9; b = 136; c = +512;
Δ = b2-4ac
Δ = 1362-4·9·512
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(136)-8}{2*9}=\frac{-144}{18} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(136)+8}{2*9}=\frac{-128}{18} =-7+1/9 $
| 16a-4=12a+5 | | 5r+2-2r+14=10 | | 7=80+9t | | 3x-10/x-6=0 | | 6f-12=-4f=6 | | -120=-20n | | -(2f-4)=-4(f+2) | | (2x)/(x^2+4)=0 | | 2/3*6=x | | 1/6x=1/5 | | 2x+4=-8+0.8x | | 29-2f=-5(8f+4) | | X/2+4x=17 | | 16a-4=12a+13 | | 5k+3=18 | | 73m=-29 | | 5(x+1/3)-2x+1=2x/10 | | 3.3-2y=1 | | 11x+2=22x+13 | | g+6=-19 | | 23=3(6x-7) | | 8b+43-(b+9)=b+1(7) | | 5x-2(x=1)=1/4 | | 4x-9=×-61 | | 2/3(6x+30)=x+5*x+4)-2x | | 21(2-x)+12×=44 | | x/9+8=-4 | | 5/9+w=9/5 | | −3−6(x−7)=42−6x | | 33-2y=1 | | 2x+11/9=2/3-x/3 | | 6x+30/2=39 |